Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
We report on the design and performance of an improved duoplasmatron ion source for secondary ion mass spectrometers. The source is designed specifically to optimize extraction of negative oxygen ions while suppressing electron extraction using a built-in magnetic asymmetry in the anode electrode. Other changes from conventional designs are (a) drilling the ion extraction aperture directly into the magnetic steel anode rather than in a refractory (nonmagnetic) metal insert, thereby eliminating a magnetic “hole” that acts to counter the desired magnetic concentration of the discharge at the aperture and (b) forming the anode into a conical shape convex toward the intermediate electrode to increase the magnetic field concentration at the extraction aperture, hence the term “Canode.” The built-in magnetic asymmetry allows the width and shape of the intermediate electrode to be varied to further optimize magnetic concentration of the discharge. Tests were performed with both ims 6f and NanoSIMS 50L instruments manufactured by Cameca Instruments, Inc. (Fitchburg, WI, USA). In the ims 6f, the Canode design gave O− primary ion currents up to a factor of five greater than the factory ion source design. In the NanoSIMS 50L, the Canode source produced a focused O− ion beam at the sample with a diameter of 50 nm, identical to the performance of the radio-frequency Hyperion ion source developed by Oregon Physics (Beaverton, OR, USA) and offered as an option by Cameca.more » « lessFree, publicly-accessible full text available July 1, 2026
-
The sulfur chemistry of (162173) Ryugu particles can be a powerful tracer of molecular cloud chemistry and small body processes, but it has not been well explored. We report identification of organosulfurs and a sulfate grain in two Ryugu particles, A0070 and A0093. The sulfate grain shows oxygen isotope ratios (δ17O = −11.0 ± 4.3 per mil, δ18O = −7.8 ± 2.3 per mil) that are akin to silicates in Ryugu but exhibit mass-independent sulfur isotopic fractionation (Δ33S = +5 ± 2 per mil). A methionine-like coating on the sulfate grain is isotopically anomalous (δ15N = +62 ± 2 per mil). Both the sulfate and organosulfurs can simultaneously form and survive during aqueous alteration within Ryugu’s parent body, under reduced conditions, low temperature, and a pH >7 in the presence of N-rich organic molecules. This work extends the heliocentric zone where anomalous sulfur, formed by selective photodissociation of H2S gas in the molecular cloud, is found.more » « less
-
Abstract This study conducts mineralogical and chemical investigations on the oldest achondrite, Erg Chech 002 (∼4565 million yr old). This meteorite exhibits a disequilibrium igneous texture characterized by high-Mg-number (atomic Mg/(Mg + Fe2+)) orthopyroxene xenocrysts (Mg number = 60–80) embedded in an andesitic groundmass. Our research reveals that these xenocrysts were early formed crystals, loosely accumulated or scattered in the short-period magma ocean on the parent body. Subsequently, these crystals underwent agitation due to the influx of external materials. The assimilation of these materials enriched the16O component of the magma ocean and induced a relatively reduced state. Furthermore, this process significantly cooled the magma ocean and inhibited the evaporation of alkali elements, leading to elevated concentrations of Na and K within the meteorite. Our findings suggest that the introduced materials are probably sourced from the reservoirs of CR clan meteorites, indicating extensive transport and mixing of materials within the early solar system.more » « less
-
Abstract The calcium–aluminum-rich inclusions (CAIs) from chondritic meteorites are the first solids formed in the solar system. Rim formation around CAIs marks a time period in early solar system history when CAIs existed as free-floating objects and had not yet been incorporated into their chondritic parent bodies. The chronological data on these rims are limited. As seen in the limited number of analyzed inclusions, the rims formed nearly contemporaneously (i.e., <300,000 yr after CAI formation) with the host CAIs. Here we present the relative ages of rims around two type B CAIs from NWA 8323 CV3 (oxidized) carbonaceous chondrite using the 26 Al– 26 Mg chronometer. Our data indicate that these rims formed ∼2–3 Ma after their host CAIs, most likely as a result of thermal processing in the solar nebula at that time. Our results imply that these CAIs remained as free-floating objects in the solar nebula for this duration. The formation of these rims coincides with the time interval during which the majority of chondrules formed, suggesting that some rims may have formed in transient heating events similar to those that produced most chondrules in the solar nebula. The results reported here additionally bolster recent evidence suggesting that chondritic materials accreted to form chondrite parent bodies later than the early-formed planetary embryos, and after the primary heat source, most likely 26 Al, had mostly decayed away.more » « less
-
Abstract We investigated the hydrogen isotopic compositions and water contents of pyroxenes in two recent ordinary chondrite falls, namely, Chelyabinsk (2013 fall) and Benenitra (2018 fall), and compared them to three ordinary chondrite Antarctic finds, namely, Graves Nunataks GRA 06179, Larkman Nunatak LAR 12241, and Dominion Range DOM 10035. The pyroxene minerals in Benenitra and Chelyabinsk are hydrated (∼0.018–0.087 wt.% H 2 O) and show D-poor isotopic signatures ( δ D SMOW from −444‰ to −49‰). On the contrary, the ordinary chondrite finds exhibit evidence of terrestrial contamination with elevated water contents (∼0.039–0.174 wt.%) and δ D SMOW values (from −199‰ to −14‰). We evaluated several small parent-body processes that are likely to alter the measured compositions in Benenitra and Chelyabinsk and inferred that water loss in S-type planetesimals is minimal during thermal metamorphism. Benenitra and Chelyabinsk hydrogen compositions reflect a mixed component of D-poor nebular hydrogen and water from the D-rich mesostases. A total of 45%–95% of water in the minerals characterized by low δ D SMOW values was contributed by nebular hydrogen. S-type asteroids dominantly composed of nominally anhydrous minerals can hold 254–518 ppm of water. Addition of a nebular water component to nominally dry inner solar system bodies during accretion suggests a reduced need of volatile delivery to the terrestrial planets during late accretion.more » « less
-
Abstract Recent studies have detected structurally bound water in the refractory silicate minerals present in ordinary and enstatite chondrite meteorites. The mechanism for the incorporation of the hydrogen is not well defined. In this paper we quantitatively examine a two-fold process involving the implantation and diffusion of nebular hydrogen ions that is responsible for the hydration of the chondritic minerals. Our simulations show that depending on critical parameters, including the flux of the protons in nebular plasma, retention coefficient, temperature of the silicate minerals, and desorption rate of implanted hydrogen, the implantation of low-energy hydrogen ions can result in equivalent water contents of ∼0.1 wt% in chondritic silicates within 10 years. Thus, this novel mechanism operating in the nebula at 10 −3 bar pressure and <650 K temperatures can efficiently hydrate the free-floating chondritic minerals prior to the rapid formation of planetesimals inside the snow line, and agree well with the wet accretion scenario for the inner solar system objects.more » « less
An official website of the United States government
